
Material Data Sheet No. 4038 November 2006 Edition

Nicrofer 6030 is a nickel-chromium-iron alloy with approximately 30 % of chromium which is particularly suitable for service in oxidizing media.

Nicrofer 6030 is characterized by:

- very good resistance to fluoride-contaminated, hot nitric acid
- good resistance to caustic cracking

- excellent resistance to stress-corrosion cracking in chloride media, in polythionic acids or in the primary circuits of nuclear reactors
- excellent resistance to many corrosive aqueous media
- good resistance to oxidation and sulfidation in high temperature gaseous environments
- high mechanical properties at both room and elevated temperatures together with good ductility

Country	Material designation				Specificatio	n			
National standards	abolgalon	Chemical composition	Tube and pipe seamless welded		Sheet and plate	Rod and bar	Strip	Wire	Forgings
D DIN DIN EN VdTÜV-Wbl.	WNr. 2.4642 NiCr29Fe	17742	17751	17751	17750 10302	17752 10302	17750 10302	17753 10302	
F AFNOR	NC 30 Fe								
UK BS									
USA ASTM ASME	UNS N06690		B 163* B 167 B 829 SB-163* SB-167		B 168 SB-168	B 166 SB-166	B 168 SB-168	B 166 SB-166	B 564 SB-564
ASME Code Case			SB-829 N-525		N-525	N-525	N-525	N-525	
ISO	NiCr29Fe9								
*Condenser and Heat E	xchanger Tubes only.								

Designations and standards

Table 1 – Designations and standards.

Chemical composition

	Ni	Cr	Fe	С	Mn	Si	Cu	S
min.	58.0	27.0	7.0					
max.		31.0	11.0	0.05	0.5	0.5	0.5	0.015

Table 2 – Chemical composition (wt.-%) according to ASTM.

Physical properties

Density	8.2 g/cm ³	0.296 lb/in. ³	
Melting range	1345 – 1375 °C	2450 – 2510 °F	
Permeability at 20 °C / 68 °F	1.0	001	

Temperat	ure (T)	Specific he	eat	Thermal conductivit	'y			Modulus of elasticity		Coefficient of thermal expansion between room temperature and T	
°C	°F	J kg · K	<u>Btu</u> Ib ·°F	W m · K	$\frac{Btu \cdot in.}{ft^2 \cdot h \cdot {}^\circ F}$	$\mu\Omega\cdot \text{cm}$	$\frac{\Omega \cdot \text{circ mil}}{\text{ft}}$	<u>kN</u> mm ²	10 ³ ksi	$\frac{10^{-6}}{K}$	<u>10⁻⁶</u> °F
0	32										
20	68	450	0.108	12.0	83	115	692	212	30.7		
93	200		0.112		96		698		30.3		7.8
100	212	470		13.5		116		206		14.1	
200	392	500		16.0		118		201		14.3	
204	400		0.120		112		710		29.1		8.0
300	572	525		18.0		120		195		14.5	
316	600		0.127		126		724		28.1		8.1
400	752	550		19.5		121.5		189		14.8	
427	800		0.134		139		734		27.1		8.3
500	932	580		21.4		122.5		182		15.2	
538	1000		0.140		153		740		26.0		8.6
600	1112	605		23.3		123.5		175		15.7	
649	1200		0.148		167		745		24.8		8.9
700	1292	630		24.8		124		167		16.2	
760	1400		0.155		180		750		23.5		9.1
800	1472	655		26.6		125		155		16.6	
871	1600		0.161		192		755		22.3		9.4
900	1652	685		28.5		126		152		17.0	
982	1800		0.170		205		763		21.0		9.6
1000	1832	715		29.7		127		143		17.3	
1093	2000		0.176		209		772				9.7
1100	2012	740		30.3		128.5				17.6	

Table 3 – Typical physical properties at room and elevated temperatures.

Mechanical properties

The following properties are applicable to Nicrofer 6030 in the specified condition and indicated size ranges. Specified properties of material outside these size ranges are subject to special enquiry.

Product	R _m		0.2% Yield strength R _{p0.2}	Elongation A50			
	N/mm ²	ksi	N/mm ²	ksi	%		
Sheet, plate, strip	586 ¹⁾	85	240	35	30 ¹⁾		
Rod, bar	500	00	240	55	50 *		
¹⁾ Not applicable for thickness under 0.25 mm (0.010 in.)							

Table 4 – Minimum mechanical properties in the soft-annealed condition at room temperature according to ASTM.

Dimensions or o.d		Tensile strength R _m		0.2% Yield strength, $R_{p0.2}$		Elongation A ⁵⁰
mm	inches	N/mm ²	ksi	N/mm ²	ksi	%
< 6.4	< 1/4	8601)	125	620	90	21)
< 12.7	< 1/2	825	120	620	90	7 ²⁾
12.7 – 25.4	1/2 – 1	760	110	585	85	10
> 25.4 – 63.5	> 1 - 2 1/2	725	105	550	80	12
≤ 6.4	≤ 1/4	690	100	550	80	5 ²⁾
> 6.4 - 12.7	>1/4 - 1/2	655	95	480	70	7
	mm < 6.4 < 12.7 12.7 - 25.4 > 25.4 - 63.5 ≤ 6.4	$< 6.4 < \frac{1}{4}$ $< 12.7 < \frac{1}{2}$ $12.7 - 25.4 \qquad \frac{1}{2} - 1$ $> 25.4 - 63.5 \qquad > 1 - 2 \frac{1}{2}$ $\leq 6.4 \qquad \leq \frac{1}{4}$	mm inches R_m < 6.4	mm inches R_m N/mm^2 ksi < 6.4	Rm mminchesRm N/mm²Rm Rp0.2 < 6.4 $< 1/4$ 860^{10} 125 620 < 12.7 $< 1/2$ 825 120 620 $12.7 - 25.4$ $1/2 - 1$ 760 110 585 $> 25.4 - 63.5$ $> 1 - 21/2$ 725 105 550 ≤ 6.4 $\leq 1/4$ 690 100 550	Rm mminches R_m N/mm²ksi $R_{p0.2}$ N/mm²ksi< 6.4

¹⁾ Not applicable for thickness under 0.25 mm (0.010 in.)

 $^{\scriptscriptstyle 2)}$ Not applicable to diameters or cross sections under 2.4 mm (3/_{32} in.)

Table 5 – Minimum mechanical properties at room temperature for various conditions and size ranges according to ASTM.

Temperature		Tensile streng R _m	gth	0.2% Yield st	rength	1.0% Yield st	rength	Elongation A₅
°C	°F	N/mm ²	ksi	R _{p0.2} N/mm ²	ksi	R _{p1.0} N/mm ²	ksi	A5 %
93	200		84		38		42	45
100	212	580		236		290		> 45
200	392	550		228		260		> 45
204	400		80		32		38	> 45
300	572	520		220		240		> 45
316	600		74		28		33	> 45
400	752	500		216		220		> 45
427	800		72		25		30	> 45
500	932	490		210		200		> 45
538	1000		70		24		29	> 45
600	1112	470		200		190		> 45
700	1292			156				
800	1472			120				

Table 6 – Typical short-time mechanical properties at elevated temperatures.

Temperature			Creep values N/mm² ksi						
°C	°F	R _{m/10⁴h}	Rp1.0/10 ⁴ h	R _{m/10⁵h}	Rp1.0/10 ⁵ h	R _{m/10⁴h}	Rp1.0/10 ⁴ h	Rm/10 ⁵ h	R _{p1.0/10⁵h}
500	932	260							
538	1000					20.7		14.6	
600	1112	105		70					
649	1200					11.3		7.5	
700	1292	56	42	39	30				
750		41	30	30	19.3				
760	1400					5.4	3.6	3.5	2.5
800	1472	30	20	21	12				
850		21.5	12.8	14.4	7.6				
871	1600					2.5	1.5	1.6	0.8
900	1652	15.4	8.2	10	4.8				
950		10.9	5.3	7	3.0				
982	1800					1.1		0.7	
1000	1832	7.7	3.4	4.8	1.9				
1050	1922	5.4	2.2	3.4	1.2				

Table 7 – Typical creep properties in the solution-annealed condition.

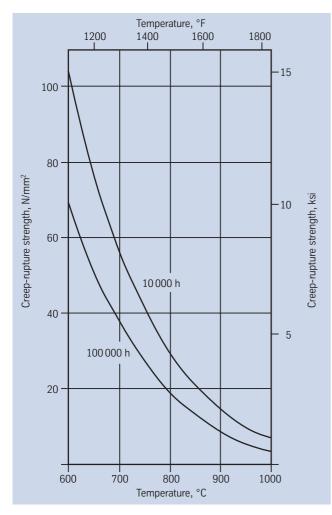


Fig. 1 – Typical creep-rupture properties in the solutionannealed condition.

Metallurgical structure

Nicrofer 6030 has a single-phase face-centered-cubic structure with a high degree of metallurgical stability.

Corrosion resistance

Nicrofer 6030 is resistant to a wide range of corrosive media and atmospheres. The high chromium content makes the alloy particularly suitable for service in strongly oxidizing conditions.

The high chromium content also confers resistance to high temperature corrosion in oxidizing and sulfidizing atmospheres.

Nicrofer 6030 exhibits excellent resistance to stress-corrosion cracking in the primary circuits of nuclear power plants. The alloy is also suitable for service in mixtures of nitric and hydrofluoric acid.

It demonstrates remarkable behaviour in concentrated (98.5 %) sulfuric acid, even at temperatures up to 150 °C (300 °F).

Temperature °C °F			Maximum allowable stress values N/mm² ksi							
Ũ	·	1)	1) 2)	Nor	2)					
38	100			21.3	21.3					
93	200			21.1	21.3					
100	212	146	147							
149	300			19.9	21.0					
200	392	132	142							
204	400			19.1	20.6					
260	500			18.5	20.2					
300	572	127	139							
316	600			18.4	20.0					
371	700			18.4	19.9					
400	752	127	137							
427	800			18.4	19.8					
482	900			18.3	19.5					
510	950			16.5						
538	1000			11.6						
566	1050			9.0						
593	1100			6.5						
621	1150			4.5						
649	1200			3.0						

Notes:

 metric values determined by interpolation
 Due to the relatively low yield strength of this material, the higher stress values were established at temperatures where the short-time tensile properties govern to permit the use of these alloys where slightly greater deformation is acceptable. The higher stress values exceed 66 2/3 %, but do not exceed 90% of the yield strength at temperature. Use of these stresses may result in dimensional changes due to permanent strain. The higher stress values are not recommended for flanges of gasketed joints or other applications where slight amounts of distortion can cause leakage or malfunction.

Table 8 – Maximum allowable stress values in tension according to ASME UNF-23.3, SB-167, SB-168

Applications

The excellent resistance both to wet corrosion and to hightemperature corrosion, combined with good mechanical properties makes Nicrofer 6030 suitable for a wide range of applications.

Typical applications include:

- processing of radioactive waste
- steam-generator internals in pressurized water reactors (PWR)
- production of alkali-metal sulfates (Mannheim furnace) •
- components in furnaces fired with heavy fuel oil . (fuel-ash corrosion)
- glass and silicate production

Fabrication and heat treatment

Nicrofer 6030 can readily be hot- and cold worked and machined.

Heating

Workpieces must be clean and free from all kinds of contaminants before and during any heat treatment.

Nicrofer 6030 may become embrittled if heated in the presence of contaminants such as sulfur, phosphorus, lead and other low-melting-point metals. Sources of such contaminants include marking and temperature-indicating paints and crayons, lubricating grease, fluids and fuels.

Fuels must be as low in sulfur as possible. Natural gas should contain less than 0.1 wt.-% sulfur. Fuel oils with a sulfur content not exceeding 0.5 wt.-% are suitable.

Due to their close control of temperature and freedom from contamination, thermal treatments in electric furnaces under vacuum or an inert gas atmosphere are to be preferred. Treatments in an air atmosphere and alternatively in gas-fired furnaces are acceptable though, if contaminants are at low levels so that a neutral or slightly oxidizing furnace atmosphere is attained. A furnace atmosphere fluctuating between oxidizing and reducing must be avoided as well as direct flame impingement on the metal.

Hot working

Nicrofer 6030 may be hot worked in the temperature range 1230 to 900 $^{\circ}$ C (2250 to 1650 $^{\circ}$ F), followed by water quenching or rapid air cooling.

For heating up, workpieces may be charged into the furnace at maximum working temperature. When the furnace has returned to temperature, the workpieces should be soaked for 60 minutes per 100 mm (4 in.) of thickness. At the end of this period it should be withdrawn immediately and worked within the above temperature range. If the metal temperature falls below the minimum hot working temperature, it must be reheated.

Heat treatment after hot working is recommended in order to achieve optimum properties and to ensure maximum corrosion resistance.

Cold working

Cold working should be carried out on annealed material. Nicrofer 6030 has a higher work-hardening rate than austenitic stainless steels. This should be taken into account when selecting forming equipment.

Interstage annealing may be necessary with high degrees of cold forming. After cold working with more than 10% deformation soft or solution annealing is required before use.

Heat treatment

Soft annealing of Nicrofer 6030 should be carried out in the temperature range 1020 to 1070 °C (1870 to 1960 °F).

Solution annealing for improved creep strength is carried out at 1080 to 1150 °C (1980 to 2100 °F). Water quenching or rapid air cooling is recommended for thicknesses above about 1.5 mm (0.06 in.) and is essential for maximum corrosion resistance.

For any thermal treatment the material should be charged into the furnace at maximum heat treatment temperature observing the precautions concerning cleanliness mentioned earlier under 'Heating'.

Descaling and pickling

Oxides of Nicrofer 6030 and discoloration adjacent to welds are more adherent than on stainless steels. Grinding with very fine abrasive belts or discs is recommended. Care should be taken to prevent tarnishing.

Before pickling which may be performed in a nitric/hydroflouric acid mixture the surface oxide layer must be broken up by abrasive blasting, by carefully performed grinding or by pretreatment in a fused salt bath. Particular attention should be paid to the pickling time and temperature.

Machining

Nicrofer 6030 should be machined in the heat-treated condition. As the alloy exhibits a high work-hardening rate, only low cutting speeds should be used compared with low-alloyed standard austenitic stainless steels. An adequate depth of cut is important in order to cut below the previously formed work-hardened zone. Tools should be engaged at all times.

Welding

When welding nickel alloys and high-alloyed special stainless steels, the following instructions should be adhered to:

Workplace

The workplace should be in a separate location, well away from the areas where carbon steel fabrication takes place. Maximum cleanliness and avoidance of draughts are paramount.

Auxiliaries, clothing

Clean fine leather gloves and clean working clothes should be used.

Tools and machinery

Tools used for nickel alloys and stainless steels must not be used for other materials. Brushes should be made of stainless material.

Fabricating and working machinery such as shears, presses or rollers should be fitted with means (felt, cardboard, plastic sheet) of avoiding contamination of the metal with ferrous particles, which can be pressed into the surface of the material and thus lead to corrosion.

Cleaning

Cleaning of the base metal in the weld area (both sides) and of the filler metal (e.g., welding rod) should be carried out with ACETONE.

Trichlorethylene (TRI), perchlorethylene (PER), and carbon tetrachloride (TETRA) must not be used as they are detrimental to health.

Edge preparation

This should preferably be done by mechanical means, i. e., by turning, milling or planing; abrasive water jet or plasma cutting is also suitable. However, in the latter case the cut edge (the face to be welded) must be finished off cleanly. Careful grinding without overheating is permissible.

Included angle

The different physical characteristics of nickel alloys and special stainless steels compared with carbon steel generally manifest themselves in a lower thermal conductivity and a higher rate of thermal expansion. This should be allowed for by means of, among other things, wider root gaps or openings (1-3 mm), while larger included angles $(60-70^\circ)$, as shown in Fig. 2, should be used for individual butt joints owing to the viscous nature of the molten weld metal and to counteract the pronounced shrinkage tendency.

Striking the arc

The arc should only be struck in the weld area, i. e., on the faces to be welded or on a run-out piece. Striking marks lead to corrosion.

Welding process

Nicrofer 6030 can be joined to itself and to many other metals by most conventional welding processes. These include GTAW (TIG), plasma arc and SMAW (MMA).

For welding, Nicrofer 6030 should be in the annealed condition and be free from scale, grease and markings. When welding the root, care should be taken to achieve best-quality root backing (argon 99.99), so that the weld is free from oxides after welding the root. Root backing is also recommended for the first intermediate pass following the initial root pass and in some cases even for the second pass depending on the weld set-up. Any heat tint should be removed preferably by brushing with a stainless steel wire brush while the weld metal is still hot.

Filler metal

For the gas-shielded welding processes, the following filler metals are recommended:

Bare electrodes: Nicrofer S 6030 – FM 52 (W.-Nr. 2.4642) UNS N06052 AWS A5.14: ERNiCrFe-7 DIN EN ISO 18274: S Ni 6052 (NiCr30Fe9)

Covered electrodes: UNS W86152

AWS A5.11: ENiCrFe-7 DIN EN ISO 14172: E Ni 6152 (NiCr30Fe9Nb)

Welding parameters and influences (heat input)

Care should be taken that the work is performed with a deliberately chosen, low heat input as indicated in Table 10 by way of example. Use of the stringer bead technique should be aimed at. Interpass temperature should be kept below 150 °C (300 °F).

The welding parameters should be monitored as a matter of principle.

The heat input Q may be calculated as follows:

11×1×60	U = arc voltage, volts
$Q = \frac{U \times I \times 60}{v \times 1000} (k J/cm)$	I = welding current, amps
V X 1000	v = welding speed, cm/min.

Consultation with ThyssenKrupp VDM's Welding Laboratory is recommended.

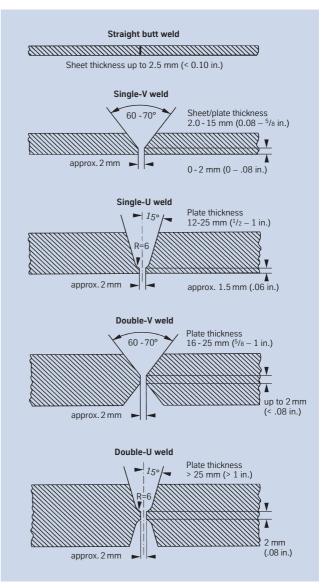


Fig. 2 – Edge preparation for welding of nickel alloys and special stainless steels.

Sheet/ plate thick- ness mm	Welding process	Filler meta Diameter mm	l Speed m/min.	Welding para Root pass I A	meters U V	Intermediate final passes I A	and U V	Welding speed cm/min.	Shielding gas Type & rate I/min.	Plasma- gas Type & rate I/min.
3.0	Manual GTAW	2.0		90	10	110-120	11	approx. 15	Ar W3 ¹⁾ 8-10	
6.0	Manual GTAW	2.0-2.4		100-110	10	120-140	12	10-16	Ar W3 ¹⁾ 8-10	
8.0	Manual GTAW	2.4		100-110	11	130-140	12	10-16	Ar W3 ¹⁾ 8-10	
10.0	Manual GTAW	2.4		100-110	11	130-140	12	10-16	Ar W3 ¹⁾ 8-10	
3.0	Autom. GTAW	1.2	approx. 1.2	manual GTA	N	150	11	25	Ar W3 ¹⁾ 15-20	
5.0	Autom. GTAW	1.2	approx. 1.4	manual GTAV	N	180	12	25	Ar W3 ¹⁾ 15-20	
2.0	Hot wire GTAW	1.0				180	11	80	Ar W3 ¹⁾ 15-20	
10.0	Hot wire GTAW	1.2		manual GTAV	V	220	12	40	Ar W3 ¹⁾ 15-20	
4.0	Plasma arc	1.2	approx. 1.0	approx. 180	25			30	Ar W3 ¹⁾ 30	Ar 4.6 3.0
6.0	Plasma arc	1.2	approx. 1.0	200-220	25			26	Ar W3 ¹⁾ 30	Ar 4.6 3.5
6.0	SMAW (MMA)	2.5		40-70	approx. 21	40-70	approx. 21			
8.0	SMAW (MMA)	2.5–3.25		40-70	approx. 21	70-100	aprrox. 22			
16.0	SMAW (MMA)	4.0				90-130	approx. 22			

¹⁾ Argon or argon + max. 3 % hydrogen

In all gas-shielded welding operations, adequate back shielding must be ensured.

Figures are for guidance only and are intended to facilitate setting of the welding machines.

Table 9 – Welding parameters (guide values).

Welding process	Heat input per unit length kJ/cm	Welding process	Heat input per unit length kJ/cm
GTAW, manual, fully mechanised	max. 8	Plasma arc	max. 10
Hot wire GTAW	max. 6	SMAW, manual metal arc (MMA)	max. 7

Table 10 – Heat input per unit length (guide values).

Postweld treatment

(brushing, pickling and thermal treatments)

Brushing with a stainless steel wire brush immediately after welding, i.e., while the metal is still hot, generally results in removal of heat tint and produces the desired surface condition without additional pickling. Pickling, if required or prescribed, however, would generally be the last operation performed on the weldment. Also refer to the information under **'Descaling and pickling'**.

Neither pre- nor postweld thermal treatments are required.

Availability

Nicrofer 6030 is available in the following standard product forms:

Sheet & plate

(for cut-to-length availability, refer to strip)

Conditions:

hot or cold rolled (hr, cr), thermally treated and pickled

Thickness mm	hr/cr	Width ¹⁾ mm	Length ¹⁾ mm
1.10 - < 1.50	Cr	2000	8000
1.50 - < 3.00	Cr	2500	8000
3.00 - < 7.50	cr/hr	2500	8000
7.50 - ≤ 25.00	hr	2500	8000 ²⁾
> 25.001)	hr	2500 ²⁾	8000 ²⁾

inches		inches	inches	
0.043 - < 0.060	Cr	80	320	
0.060 - < 0.120	Cr	100	320	
0.120 - < 0.300	cr / hr	100	320	
0.300 - ≤ 1.000	hr	100	320 ²⁾	
> 1.0001)	hr	100 ²⁾	320 ²⁾	
¹⁾ other sizes subject to special enquiry				

Rod & bar Conditions: forged, rolled, drawn, thermally treated, pickled, machined, peeled or ground

Product	Forged ¹⁾ mm	Rolled ¹⁾ mm	Drawn ¹⁾ mm
Rod (o. d.)	≤ 400	8 - 100	12 – 65
Bar, square (a)	80 – 350	15 – 280	not standard
Bar, flat (a x b)	(40 – 80) x (200 – 400)	(5 – 20) x (120 – 600)	not standard
Bar, hexagonal (s)	40 - 80	13 – 41	≤ 50

	inches	inches	inches	
Rod (o. d.)	≤ 16	⁵ / ₁₆ - 4	¹ / ₂ - 2 ¹ / ₂	
Bar, square (a)	$3^{1}/_{8} - 13^{3}/_{4}$	$^{10}/_{16} - 11$	not standard	
Bar, flat (a x b)	(1 ⁵ / ₈ - 3 ¹ / ₈)	(³ / ₁₆ - ³ / ₄)	not standard	
	Х	Х		
	(8 – 16)	(4 ³ / ₄ - 24)		
Bar, hexagonal (s)	$1^{5}/_{8} - 3^{1}/_{8}$	$^{1}/_{2} - 1^{5}/_{8}$	≤ 2	
¹⁾ other sizes and conditions subject to special enquiny				

¹⁾ other sizes and conditions subject to special enquiry

Forgings

Shapes other than discs, rings, rod and bar are subject to special enquiry. Flanges and hollow shafts may be available up to a piece weight of 10 t.

²⁾ depending on piece weight

Discs and rings

Conditions:

Available up to a maximum piece weight of 6 t for discs and 3 t for rings in accordance to drawings and technical feasability.

Strip¹⁾

Conditions: cold rolled, thermally treated and pickled or bright annealed. ¹⁾ Strip and cut-to-length availability subject to special enquiry.

Wire

Conditions: bright drawn, 1/4 hard to hard, bright annealed

Dimensions:

0.1 - 12.0 mm (0.004 - 0.47 in.) diameter, in coils, pay-off packs, on spools and spiders

Welding filler metals

Suitable welding rods, wire, strip electrodes and electrode core wire are available in standard sizes.

Seamless tube and pipe

Using ThyssenKrupp VDM cast materials seamless tubes and pipes are produced and may be available from DMV STAINLESS Deutschland GmbH, Wiesenstr. 36, D-45473 Mülheim/Ruhr; (Tel.: +49 208 458-2611; Fax: +49 208 458-2641; Email: salesgermany@dmv-stainless.com; Internet: www.dmv-stainless.com).

Welded tube and pipe

Welded tubes and pipes are obtainable from qualified manufacturers using ThyssenKrupp VDM semi-fabricated products. The information contained in this data sheet is based on results of research and development work and data listed in applicable specifications and standards available and in effect at the time of printing. It does not provide any guarantee of particular characteristics or fit. ThyssenKrupp VDM reserves the right to make changes without notice. The data sheet has been compiled to the best knowledge of ThyssenKrupp VDM and is given without any liability on the part of ThyssenKrupp VDM. ThyssenKrupp VDM is only liable according to the terms of the sales contract and in particular to the General Conditions of Sales in case of any delivery from ThyssenKrupp VDM.

As updates of data sheets are not automatically send out, when issued, ThyssenKrupp VDM recommends to request the latest edition of required data sheets either by phone +49 2392 55-2588, by fax +49 2392 55-2596 or by Email under vdm@thyssenkrupp.com.

Current issues of brochures and data sheets are also available in the Internet under www.thyssenkruppvdm.com. November 2006 Edition.

This edition supersedes material data sheet no. 4038, dated January 2003.

Nicrofer

ThyssenKrupp VDM GmbH

Plettenberger Strasse 2 58791 Werdohl P.O. Box 18 20 58778 Werdohl Germany Phone: +49 2392 55-0 Fax: +49 2392 55-2217 Email: vdm@thyssenkrupp.com www.thyssenkruppvdm.com