9.1 C-C distance

The C-C distance is the distance between the cables.

In an average house the C-C distance should not exceed 15 cm if the cables are installed as part of a total heating system. If the C-C distance is higher, cold zones may form on the floor surface. The bigger the C-C distance is, the more concrete should be applied to the cables to ensure an even temperature on the floor surface.

When deviflex[™] heating cables are installed, we recommend the use of devifast[™] fitting bands. These bands are designed to ensure a C-C distance at regular intervals of 2.5 cm, e.g. 10 cm, 12.5 cm, 15 cm, 17.5 cm, etc.

Two different formulas may be used to calculate the C-C distance:

1) $\frac{\text{Sum of usable floor space } [\text{m}^2] \times 100 \text{ [cm/m]}}{\text{Cable length } [\text{m}]} = \text{C-C distance } [\text{cm}]$

2)

Output per m cable [W/m] x 100 [cm/m]

Output per m² usable floor space [W/m²] = C-C distance [cm]

Example 1

The deviflex™ DTIP-18, 535 W, 29 m is to be installed in a bathroom with a usable floor space of 3 m².

The calculated C-C distance is:

$$\frac{3 \text{ m}^2 \text{ x } 100 \text{ cm/m}}{29 \text{ m}} = 10.35 \text{ cm}$$

If we use devifast™ fitting bands, we can install the heating cable in this bathroom with a C-C distance of 10 cm.

Example 2

For a floor renovation we choose a deviflex[™] DTIP-10 cable (10 W/m). If the calculated output is 120 W/m², the calculated C-C distance is:

$$\frac{10 \text{ W/m x } 100 \text{ cm/m}}{120 \text{ W/m}^2} = 8.3 \text{ cm}$$

The table shows the C-C distances and corresponding outputs per m²:

C-C distance	20W/m cable	18 W/m cable	17 W/m cable	10 W/m cable
5 cm	400 W/m ²	360 W/m ²	340 W/m ²	200 W/m ²
7.5 cm	266 W/m ²	240 W/m ²	227 W/m ²	133 W/m ²
10 cm	200 W/m ²	180 W/m ²	170 W/m ²	100 W/m ²
12.5 cm	160 W/m ²	144 W/m ²	136 W/m ²	80 W/m ²
15 cm	133 W/m ²	120 W/m ²	113 W/m ²	66 W/m ²
17.5 cm	114 W/m ²	103 W/m ²	97 W/m²	57 W/m ²
20 cm	100 W/m ²	90 W/m ²	85 W/m ²	50 W/m ²
22.5 cm	89 W/m ²	80 W/m ²	76 W/m ²	
25 cm	80 W/m ²	72 W/m²	68 W/m²	

9.2 The devifast™ fitting bands

If we want to calculate the length of a devifast™ fitting band, we first have to determine the distance between the fitting bands.

For concrete floors where the cable is covered with 3 cm of concrete or more and the C-C distance is more than 10 cm, the distance between the devifast™ fitting bands can be up to 1 m.

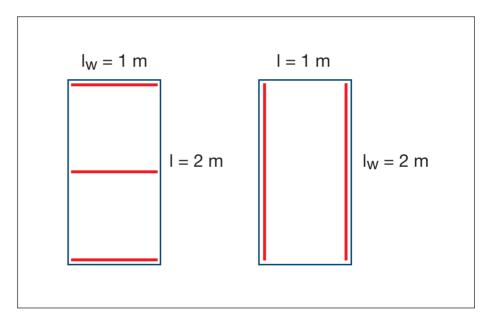
For thin floors where the cable is covered with 1-2 cm of self-levelling compound and the C-C distance is 10 cm or less, the max. distance between the devifast™ fitting bands is 25 cm.

Below is the formula for calculation of C-C distance.

$$\frac{\text{Sum of usable floor space }[m^2] \times 100 \text{ [cm/m]}}{\text{Distance between devifast}^{\text{\tiny{TM}}}} + I_{\text{W}} \text{ [m]} = \text{length of devifast}^{\text{\tiny{TM}}} \text{ [m]}$$

 I_w is the length of the wall parallel to which the devifast $^{\scriptscriptstyle{\text{TM}}}$ is installed.

Example


The usable floor space is 1 m x 2 m = 2 m^2 .

If we install devifast™ fitting bands parallel to a 1 m wall and the distance between the devifast™ fitting bands is 1 m, we need a fitting band with a length of:

$$\frac{2 \text{ m}^2 \text{ x } 100 \text{ cm/m}}{100 \text{ cm}} + 1 \text{ m} = 3 \text{ m}$$

If we install devifast^m fitting bands parallel to a 2 m wall and the distance between the devifast^m fitting bands is 1 m, we need a fitting band with a length of:

$$\frac{2 \text{ m}^2 \text{ x } 100 \text{ cm/m}}{100 \text{ cm}} + 2 \text{ m} = 4 \text{ m}$$

As we can see from this example, the length of a devifast™ fitting band may vary although the area and the distance between the devifast fitting bands remain the same

